Ahmad Elmasnousy
QUESTION 1. Let V be a a vector space over the field R. Assume $I N(V)$ is and odd number ≥ 3 (ie., dim(V) is an odd integer ≥ 3). Assume $T: V \rightarrow V$ is a linear transformation. Convince me that there is a nonzero element in V, say v, and a real number $c \in R$ such that $T(v)=c v$. (short proof)

$$
I N(V)=2 n+1 \quad n \in \mathbb{N}^{*}=\{1,2,3,-\}
$$

Let m be the standard matrix rep. of T, M is $(2 n+1) \times(2 n+1) n \in \mathbb{N}$ $C_{m}(\alpha)=\left|\alpha I_{2 n+1}-m\right|$ is a polynomial of degree $2 n+1$
$=$ product of polynomials of degree 1 or degree 2
$\Rightarrow C_{m}(\alpha)$ has at least one real root $(C \in \mathbb{R}$) (since degree is odd $\geqslant 3$.
$\Rightarrow \exists C \in \mathbb{R}$ sit. $\left|C I_{2 n+1}-M\right|=0 \Rightarrow C$ is an eigenvalue of V under M (eigenvalue)
$\Rightarrow \exists v \in V\left(V \neq O_{v}\right)$ sit $c v=M V \stackrel{\text { Translate }}{\Rightarrow}$
QUESTION 2 L er : $R^{3} \quad T(V)=\mathrm{CV}$ (do not show that).

- Convince me that R^{3} has exactly 3 eigenspaces under T and construct such subspaces.

Let M be the standard matrix representation of T, M is 3×3

$$
\begin{aligned}
M=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 2 \\
0 & 1 & -1
\end{array}\right] \quad\left|\alpha I_{3}-M\right|=\left|\begin{array}{ccc}
\alpha & 0 & 0 \\
-1 & \alpha & -2 \\
0 & -1 & \alpha+1
\end{array}\right| \\
=(-1)^{2} \alpha\left|\begin{array}{cc}
\alpha & -2 \\
-1 & \alpha+1
\end{array}\right|=\alpha\left[\alpha^{2}+\alpha-2\right]=\alpha(\alpha-1)(\alpha+2)
\end{aligned}
$$

Set $\left|\alpha I_{3}-M\right|=0 \Rightarrow$ Eigen values are $\alpha_{1}=0, \alpha_{2}=1, \alpha_{3}=-2 \in \mathbb{R}$ $\Rightarrow \mathbb{R}^{3}$ has exactly 3 eigen spaces under T (we have 3 in \mathbb{R} eigenvalues)

$$
\begin{aligned}
& \underline{\alpha_{1}}=0 \Rightarrow \text { solve hamugencous }\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
-1 & 0 & -2 & 0 \\
0 & -1 & 1 & 0
\end{array}\right] \Rightarrow \begin{array}{ll}
-a_{2}+a_{3}=0 & a_{2}=a_{3} \\
-a_{1}-2 a_{3}=0 & a_{1}=-2 a_{3}
\end{array} \\
& \sqrt{ } \Rightarrow E_{0}=\left\{\left(-2 a_{3}, a_{3}, a_{3}\right)\right\}=\left\{a_{3}(-2,1,1)\right\}=\operatorname{span}\{(-2,1,1)\} \\
& \stackrel{\alpha_{2}=1}{-}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
-1 & 1 & -2 & 0 \\
0 & -1 & 2 & 0
\end{array}\right] \stackrel{R_{1}+R_{2}}{\sim} R_{2}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & -1 & 2 & 0
\end{array}\right] \stackrel{R_{2}+R_{3} \rightarrow R_{3}}{\sim}\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& r \Rightarrow a_{1}=0, \quad a_{2}-2 a_{3}=0 \quad a_{2}=2 a_{3} \\
& E_{1}=\left\{\left(0,2 a_{3}, a_{3}\right)\right\}=\left\{a_{3}(0,2,1)\right\}=\operatorname{Spun}\{(0,2,1)\} \\
& \text { the page }
\end{aligned}
$$

Question $2=$ (Continueu)

$$
\begin{aligned}
& \alpha=-2 \quad\left[\begin{array}{ccc|c}
-2 & 0 & 0 & 0 \\
-1 & -2 & -2 & 0 \\
0 & -1 & -1 & 0
\end{array}\right] \begin{array}{l}
\underset{-1 / 2 R_{1} \rightarrow R_{1}}{-R_{2} \rightarrow R_{2}} \\
-R_{3} \rightarrow R_{3}
\end{array}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
1 & 2 & 2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]-R_{1}+R_{2} \rightarrow R_{2} \\
& {\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 2 & 2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \stackrel{R_{2} R_{2} \rightarrow R_{2}}{\sim}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]-R_{2}+R_{3} \rightarrow R_{3}\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& \Rightarrow a_{1}=0 \quad a_{2}=-a_{3} \\
& E_{-2}=\left\{\left(0,-a_{3}, a_{3}\right)\right\}=\left\{a_{3}(0,-1,1)\right]=\operatorname{span}\{(0,-1,1)\}
\end{aligned}
$$

- Convince me that T is singular (i.e., T is not invertible) (Short sentence)
$0<|m|=0 \Rightarrow M$ is not invertible $\Rightarrow T$ is not invertible
- Construct a diagonal linear transformation, say F (from R^{3} into R^{3}), and construct a nonsingular (invertible) linear transformation L (from R^{3} into R^{3}) such that $L \circ F \circ L^{-1}=T$. (Do not construct L^{-1}) that $L\left(a x^{2}+b x+c\right)=(a+2 c) x+b-c$. Clearly that L is a linear transformation

$$
P_{3} \approx \mathbb{R}^{3} L^{\prime}(a, b, c)=(0, a+2 c, b-c) \quad L^{\prime}=1 R^{3} \rightarrow R^{3}
$$

$$
\text { S.M,R of } L^{\prime}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 2 \\
0 & 1 & -1
\end{array}\right]=M \text { (in question 2) }
$$

$\Rightarrow P_{3}$ has 3 eigenvalues under $L, \alpha_{1}=0, \alpha_{2}=1, \alpha_{3}=-3 \in \mathbb{R}$

* $\Rightarrow P_{3}$ has 3 eigenspaces under L.

$$
E_{0}=\operatorname{span}\left\{-2 x^{2}+x+1\right\}, E_{1}=\operatorname{span}[2 x+1\}, E_{-2}=\operatorname{span}\{-x+1\}
$$

- Convince me that $\frac{L i}{}$ singular (ie. Lis not invertible) (Short sentence)
$|M|=0 \Rightarrow M$ is not invertible $\Rightarrow T$ is not invertible
- Construct a diagonal linear transformation, say F (from P_{3} int g P_{3}), and construct a nonsingular (invertible) linear transformation $\left(\frac{L}{K}\right.$ (from P^{3} into P_{3}) such that \mathcal{L} o F o $L^{-1}=7$ (Do not construct $\frac{Z^{-1}}{K}$)

$$
\begin{aligned}
& \text { sing } \Rightarrow F^{\prime}(a, b, c)=(a, b,-2 c) b F\left(a x^{2}+b x+c\right)=b x-2 c \\
& Q^{2} \\
& K(a, b, c)=(-2 a, a+2 b-c, a+b+c)
\end{aligned}
$$

ot

$$
\Rightarrow L\left(a x^{2}+b x+c\right)=-2 a x^{2}+(a+2 b-c) x+(a+b+c)
$$

- Let $D=\left\{f(x) \in P_{3} \mid L(f(x))=3 x+1\right\}$. Describe the cements ts in $D \quad P_{3} \approx \mathbb{R}^{3}, L^{\prime}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$

$$
\begin{aligned}
& D^{\prime}=\left\{(a, b, c) \mid L^{\prime}(a, b, c)=(0,3,1)\right\} \\
& L^{\prime}(a, b, c)=(0, a+2 c, b-c) \\
& \text { K }=\{(a, b, c) \mid(0, a+2 c, b-c)=(0,3,1)\} \\
& \text { Note: I used the original } L \\
& \text { of the question } \\
& =\{(a, b, c) \mid a+2 c=3 \text { and } b-c=1\} \\
& L\left(a x^{2}+b x+c\right)=(a+2 c) x+b-c \\
& =\{(3-2 c, c+1, c) \mid c \in \mathbb{R}\}=\{(3,1,0)+c(-2,1,1) \mid c \in \mathbb{R}\} \\
& \Rightarrow D=\left\{3 x^{2}+x+C\left(-2 x^{2}+x+1\right) \mid C \in \mathbb{R}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A \leq\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]_{1} \quad Q=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
1 & 2 & -1 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& F\left(a_{1}, a_{2}, a_{3}\right)=a_{1}(0,0,0)+a_{2}(0,1,0)+a_{3}(0,0,-2)=\left(0, a_{2},-2 a_{3}\right) \\
& F \because R^{3} \rightarrow \mathbb{R}^{3} 5+t \\
& L\left(a_{1}, a_{2}, a_{3}\right)=\left(-2 a_{1}, a_{1}+2 a_{2}-a_{3}, a_{1}+a_{2}+a_{3}\right) F\left(a_{3} a_{3} a_{3}\right)=D\left[\begin{array}{l}
a_{1} \\
a_{1} \\
\text { QUESTION } 3 \text { (Hint: Short answers! Not much work, use class notes and stare }
\end{array}\right] \\
& \text { QUESTION } 3 \text { (Hint: Short answers! Not much work, use class notes and stare at Question 2). . Let } L: P_{3} \rightarrow P_{3} \text { such- }
\end{aligned}
$$

QUESTION 4. (i) Let $A, n \times n$, be a nonsingular matrix over a field F. Suppose that c is an eigenvalue of A. Convince me that c^{-1} is an eigenvalue of A^{-1} and $E_{c}=E_{c^{-1}}$ (note that c^{-1} is the inverse of c under multiplication) (short ANSWER)
C is an eigenvalue of $A \Rightarrow A$ has an eigen space E_{c}

$$
A v=c V \quad \forall \cdot V \in E C
$$

Since A is invertible $\Rightarrow A^{-1}$ exists

$$
\begin{aligned}
& \Rightarrow \quad A^{-1} A V=A^{-1} C V=C A^{-1} V \quad \forall V \in E_{c} \\
& I_{n} V=A^{-1} V \\
& V=C A^{-1} V \\
& C^{-1} V=C^{-1} C A^{-1} V=1 A^{-1} v=A^{-1} V \\
& \Rightarrow C^{-1} V=A^{-1} V \Rightarrow C_{c}^{-1} \text { is an eigenvalue of } A-1 \text { and } V \in E_{C} \\
& \forall V \in E_{c}
\end{aligned}
$$

(ii) Assume that A is a 3×3 matrix with eigenvalues $2,5,3$. Find $C_{A^{-1}}(\alpha)$ (Very short answer!)

By (i) $\quad \alpha_{1}=1 / 2, \alpha_{2}=1 / 5, \alpha_{3}=1 / 3$ are eigenvalues of $A^{-1}(3 \times 3)$
$\Rightarrow C_{A_{-1}}(\alpha)$ is a polynomial of degree 3 with roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$

$$
C_{A^{-1}}(\alpha)=(x-1 / 2)(x-1 / 5)(x-1 / 3)
$$

(iii) Let $A, n \times n$, be matrix over a field F. Suppose that c is an eigenvalue of A. Convince me that c^{n} is an eigenvalue of A^{n} for every positive integer $n \geq 2$.
$A n \times n, c$ is an eigenvalue of $A \Rightarrow A V=C V \quad V \in E_{c}$ (eigen space of f required to prove that $A^{n} V=C^{n} V$ we proceed by induction
$n=1 \quad A v=C V$ (given, since C is an eigenvalue of A)
Assume $A^{n-1} V=C^{n-1} V$
Proof for $n: A^{n} v=A A^{n-1} v=A C^{n-1} v=C^{n-1} A v=C^{n-1} C V=C^{n} v$ $n \geq 2$

$$
\Rightarrow A^{n} v=c^{n} v
$$

$$
3 \ll
$$

$\Rightarrow c^{n}$ is un eigenvalue of $A^{n} \quad(n \geqslant 2)$
Brief Lecture: From this question we learn the following. Let V be a finite dimensional vector space over a field F. Assume that $T: V \rightarrow V$ is a linear transformation. If T is $1-1$ and onto and c is an eigenvalue of T, then c^{-1} is an eigenvalue of T^{-1} and $E_{c}=E_{c^{-1}}$. If c is an eigenvalue of T, then c^{n} is an eigenvalue of T^{n} for every positive integer $n \geq 2$. (note: $T^{n}=T \circ T \circ \cdots \circ T$)

QUESTION 5. (Short answer, but think) Let A be a 4×4 matrix over R. Given $|A|=30,3,5$ are eigenvalues of A, and $\operatorname{Trace}(A)=10$. Convince me that A is not diagnolizable over R. Find $C_{A}(\alpha)$. Is A diagnolizable over C ? explain BRIEFLY.
$C_{A}(\alpha)$ is a polynomial of degree $4 \Rightarrow$ there are 4 eigenvalues of A in \mathbb{C}

$$
\begin{aligned}
& \alpha_{1}=3, \alpha_{2}=5 \\
& |A|=\alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4}=30 \Rightarrow \alpha_{3} \cdot \alpha_{4}=2 \Rightarrow \alpha_{4}=2 / \alpha_{3} \\
& \text { Trace }(A)=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=10 \Rightarrow \alpha_{3}+\alpha_{4}=2 \Rightarrow \alpha_{3}+2 / \alpha_{3}=2 \Rightarrow \alpha_{3}^{2}-2 \alpha_{3}+2=0
\end{aligned}
$$

sec back of the page
QUESTION 6. Let $T: R^{4} \rightarrow R^{3}$ such that $T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(a_{1}+a_{2}+a_{3}, a_{3}+2 a_{4}-a_{1}-a_{2}-a_{3}\right)$
(i) Find the standard matrix representation of T.

$$
M=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 \\
-1 & -1 & -1 & 0
\end{array}\right]
$$

(ii) Let $B=\left\{(1,0,0,0),(0,1,-1,-1),\left(0,0, V_{1}, 1\right),(0,1,-1,0)\right\}$ be a basis for R^{4}, and $B^{\prime}=\{(1,-1,0),(0,1,-1),(1,-1,1)\}$ be a basis for R^{3}. Find the matrix representation of T with respect to B and $B_{\dot{v}_{1}}^{\prime}$
$=\left[\begin{array}{cccc}1 & v_{2} & v_{3} & v_{4} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0\end{array}\right]$

$$
W=\left[\begin{array}{ccc}
w_{1} & w_{2} & w_{3} \\
1 & 0 & 1 \\
-1 & 1 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

$$
M_{B B^{\prime}}=w^{-1} M Q
$$ matrix $r=p$. of T w.r.t ${ }^{L} \& B^{\prime}$

$\left.\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ -1 & 1 & -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1\end{array}\right] R_{N}+R_{2} \rightarrow R_{2}\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & -1 \\ 0 & -1 & 1 & 0 & -1 & 1\end{array}\right] \begin{array}{c}R_{3} \\ 0\end{array}\right]$

$$
=\left[\begin{array}{llll}
1 & 1 & 0 & -2 \\
1 & 1 & 2 & 2 \\
0 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & -1 & 1 & -1 \\
0 & -1 & 1 & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 & 3 & -2 \\
1 & -3 & 4 \\
1 & -1 \\
0 & -3 & 3
\end{array}\right]
$$

Q5) continued
Polynomial of degree z :
$\alpha_{3}^{2}-2 \alpha_{3}+2=0$ has no real roots (can't be reduced in \mathbb{R} !
$\Rightarrow \alpha_{3} \in \mathbb{C} \Rightarrow \alpha_{4}=\overline{\alpha_{3}}$ (complex conjugate)

* $\Rightarrow A$ is not diagonalizable over $\mathbb{R} \rightarrow \rightarrow$ bernese \hat{A} is not

$$
* * C_{A}(\alpha)=(x-3)(x-5)\left(x-\alpha_{3}\right)\left(x-\bar{\alpha}_{3}\right)
$$ product of linear factors

where α_{3} is the root of $\alpha_{3}^{2}-2 \alpha_{3}+2=0, \alpha_{3} \in \mathbb{C}$
** Yes, A is diogonalizable over \mathbb{C}
Because the power of all Linear factors of $C_{A}(\alpha)$ is 1

* as per class notes, there's no need to check that $\operatorname{IN}\left(E_{\alpha_{i}}\right)=n_{i}$ where n_{i} is the power of the linear factor $\left(x-\alpha_{i}\right)$ since all powers are 1

En the

$$
\left.\begin{array}{l}
\alpha_{1} \cdot \alpha_{2} \cdot \alpha_{3} \cdot \alpha_{4}=30 \\
\alpha_{3} \cdot \alpha_{4}=2 \quad \alpha_{4}=\bar{\alpha}_{3} \\
\Rightarrow \operatorname{Re}^{2}\left(\alpha_{3}\right)+\operatorname{Im}^{2}\left(\alpha_{3}\right)=2 \\
\alpha_{3}+\alpha_{4}=2 \\
2 \operatorname{Re}\left(\alpha_{3}\right)=2 \\
\operatorname{Re}\left(\alpha_{3}\right)=1 \quad \Rightarrow \quad 1+\operatorname{Im}^{2}\left(\alpha_{3}\right)=2 \\
\\
\Rightarrow \operatorname{In}_{3}\left(\alpha_{3}\right)=1 \\
\Rightarrow \quad 1+i \quad \alpha_{4}=1-i
\end{array}\right\}
$$

$$
\alpha_{3}=1+i
$$

$$
\alpha_{4}=\bar{\alpha}_{3}=1-i
$$

(iii) Find a general formula for $\left[\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right]_{B}$

$$
\begin{aligned}
& Q^{-1}\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & -1 & 0 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow[I_{2}+R_{4} \rightarrow R_{4}]{\sim} \begin{array}{l}
R_{2}+R_{3} \rightarrow R_{3} \\
\text { see back of the } \\
\text { page }
\end{array} \\
& {\left[\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right]_{B}=\left(a_{1}, a_{2}+a_{3}-a_{4}, a_{2}+a_{3},-a_{3}+a_{4}\right) \text { Ot }}
\end{aligned}
$$

(iv) Find $[(2,4,1,1)]_{B}$

$$
=(2,4,5,0)
$$

ok
(v) Use the matrix in (i) and find $T(2,4,1,1)$

$$
\begin{aligned}
& \text { (v) Use the matrix in (i) and find } T(2,4,1,1) \\
& =2(1,0,-1)+4(1,0,-1)+1(1,1,-1)+1(0,2,0) \\
& =(2+4+1,1+2,-2-4-1)=(7,3,-7)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (vi) Use the matrix in (ii) and find } T(2,4,1,1) \text { (show the steps) } u \operatorname{sing} M_{B B^{\prime}} \\
& {[(2,4,1,1)]_{B}=(2,4,5,0)} \\
& \begin{aligned}
& {[T(2,4,1,1)]_{B B^{\prime}}\left(\begin{array}{c}
2 \\
4 \\
5
\end{array}\right) } \\
& {[}=2(1,1,0)+4(3,-3,-3)+5(-2,4,3) \\
&=(2+12-10,2-12+20,-12+15)=(4,10,3)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& T(2,4,1,1)=4(1,-1,0)+10(0,1,-1)+3(1,-1,1)=(4+3,-4+10-3,-10+ \\
& w_{2}=(7,3,-7) \\
& \text { (vii) Find } Z(T) \text { (i.e.,. } \operatorname{wer(T)).~It~is~much~easier~to~use~the~matrix~in~(i)~}
\end{aligned}
$$

$$
\begin{aligned}
& M=\left[\begin{array}{cccc|c}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
-1 & -1 & -1 & 0 & 0
\end{array}\right] \stackrel{R_{1}+R_{3} \rightarrow R_{3}}{\sim}\left[\begin{array}{llll|l}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]-R_{2}+R_{1} \rightarrow R_{1} \\
& {\left[\begin{array}{cccc|c}
1 & 1 & 0 & -2 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& a_{1}+a_{2}-2 a_{4}=0 \\
& \Rightarrow a_{1}=2 a_{4}-a_{2} \\
& a_{3}+2 a_{4}=0 \\
& a_{3}=-2 a_{4} \\
& Z(T)=\left\{\left(2 a_{4}-a_{2}, a_{2},-2 a_{4}, a_{4}\right)\right\} \\
& =\left\{\left(-a_{2}, a_{2}, 0,0\right)+\left(2 a_{4}, 0,-2 a_{4}, a_{4}\right)\right\} \\
& =\left\{a_{2}(-1,1,0,0)+a_{+}(2,0,-2,1)\right\} \\
& =\operatorname{span}\{(-1,1,0,0),(2,0,-2,1)\}
\end{aligned}
$$

1II) continued

$$
\begin{aligned}
& {\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 1
\end{array}\right]}
\end{aligned} \sim_{3} R_{3} R_{4} \rightarrow R_{4}\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 1
\end{array}\right]
$$

(viii) Find a general formula for $\left[\left(a_{1}, a_{2}, a_{3}\right)\right]_{B}$,

$$
\begin{aligned}
& \text { (viii) Find a general formula for }\left[\left(a_{1}, a_{2}, a_{3}\right)\right]_{B}, \\
& {\left[\left(a_{1}, a_{2}, a_{3}\right)\right]_{B^{\prime}}} \\
& =a_{1}(0,1,1)+a_{2}(-1,1,1)+a_{3}(-1,0,1) \\
& =\left(-a_{2}-a_{3}, a_{1}+a_{2}, a_{1}+a_{2}+a_{3}\right)
\end{aligned}
$$

(ix) Find a basis for the Range of T, Say, $D=\left\{W_{\mathrm{t}}, W_{2}, \ldots, W_{k}\right\}$ is such basis. Then find $\left[W_{\mathrm{i}}\right]_{B \prime}$ for each $W_{i} \in D$.

$$
\begin{aligned}
& M=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 \\
-1 & -1 & -1 & 0
\end{array}\right] S, m, R \text { of } T \\
& \operatorname{Range}(T)=\operatorname{spun}\{(1,0,-1),(1,1,-1)\} \\
& D=\{(1,0,-1),(1,1,-1)\} \\
& w_{1}
\end{aligned}
$$

using (Viii)

$$
\begin{aligned}
& {\left[w_{1}\right]_{B^{\prime}}=[(1,0,-1)]_{B^{\prime}}=(1,1,0)} \\
& {\left[w_{2}\right]_{B^{\prime}}=[(1,1,-1)]_{B^{\prime}}=(0,2,1)}
\end{aligned}
$$

QUESTION 7. (Not much work!, stare at question 6!, almost done!) Let $L: R^{2 \times 2} \rightarrow P^{3}$ such that $L\left(\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]\right.$) = $\left(a_{1}+a_{2}+a_{3}\right) x^{2}+\left(a_{3}+2 a_{4}\right) x+-a_{1}-a_{2}-a_{3}$
(i) Find the fake standard matrix representation of $L .1^{2 \times 2} \approx 12^{4} P^{3} \approx 12^{3}$

$$
\begin{aligned}
& L^{\prime}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(a_{1}+a_{2}+a_{3}, a_{3}+2 a_{4},-a_{1}-a_{2}-a_{3}\right) \\
& \text { (name af 96.) } \rightarrow M^{\prime}=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 \\
-1 & -1 & -1 & 0
\end{array}\right](3 \times+)
\end{aligned}
$$

(ii) Let $B=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$ be a basis for $R^{2 \times 2}$, and $B^{\prime}=\left\{x^{2}-x, x-1, x^{2}-x+1\right\}$ be a basis for P_{3}. Find the fake matrix representation of L with respect to B and B^{\prime}.
From question $6: \quad \mathbb{R}^{2 \times 2} \approx \mathbb{R}^{4} \quad P^{3} \approx \mathbb{R}^{3}$

$$
M_{B B^{\prime}}^{\prime}=\left[\begin{array}{rrrr}
1 & 3 & -2 & 1 \\
1 & -3 & 4 & -1 \\
0 & -3 & 3 & -1
\end{array}\right]
$$

(iii) Find a general formula for $\left[\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]\right]_{B}=\begin{aligned} & \text { Exact ANSWER AS in 6(iii) } \\ & \text { using question } 6 \text { (iii) }\end{aligned}$

$$
\text { (iv) Find }\left[\begin{array}{ll}
2 & 4 \\
1 & 1
\end{array}\right]_{B}=\begin{aligned}
& (2,4,5,0) \\
& \text { EXACT } \\
& \text { ANSWER as in } \\
& 6(\text { iii })
\end{aligned}
$$

(v) Use the matrix in (i) and find $L\left(\left[\begin{array}{ll}2 & 4 \\ 1 & 1\end{array}\right]\right)=7 x^{2}+3 x-7$

$$
L^{\prime}(2,4,1,1)=(7,3,-7)
$$

(vi) Use the matrix in (ii) and find $L\left(\left[\begin{array}{ll}2 & 4 \\ 1 & 1\end{array}\right]\right.$) (show the steps)

$$
\begin{aligned}
& L^{\prime}(2,4,1,1) \text { using } M_{B B}^{\prime} \\
& {[(2,4,1,1)]_{B}=(2,4,5,0)} \\
& {\left[L^{\prime}(2,4,1,1)\right]_{B^{\prime}}=(4,10,3) \Rightarrow L^{\prime}(2,4,1,1)=(7,3,-7)} \\
&
\end{aligned}
$$

(vii) Find $Z(L)$ (ie., $\operatorname{Ker}(\mathrm{L})$). [It is much easier to use the matrix in (i)]

$$
\begin{aligned}
& Z\left(L^{\prime}\right)=\operatorname{span}\{(-1,1,0,0),(2,0,-2,1)] \\
& Z(L)=\operatorname{span}\left\{\left[\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
2 & 0 \\
-2 & 1
\end{array}\right]\right.
\end{aligned}
$$

(From Q6)

(viii) Find a general formula for $\left[a_{2} x^{2}+a_{1} x+a_{0}\right]_{B t}$

$$
=\left(\left(-a_{1}-a_{0}\right) \text { th }\left(a_{2}+a_{1}\right) H_{1}+\left(a_{2}+a_{1}+a_{0}\right) \text { (From } 06\right)
$$

(ix) Find a basis for the Range of L, Say, $D=\left\{W_{1}, W_{2}, \ldots, W_{k}\right\}$ is such basis. Then find $\left[W_{i}\right]_{B}$, for each $W_{i} \in D$.

$$
\begin{aligned}
& \text { Range }(L)=\operatorname{span}\left\{x^{2}-1, x^{2}+x-1\right] \\
& {\left[W_{1}\right]_{B^{\prime}}=\left[x^{2}-1\right]_{B^{\prime}}=\begin{array}{l}
\text { Same answer } \\
\text { as Question 6 (using viii) } \\
\text { \& Q Qb }
\end{array}} \\
& {\left[W_{2}\right]_{B^{\prime}}=\left[x^{2}+x-1\right]_{B}}
\end{aligned}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26656, Sturjah, United Arab Emirates. Email: abadawicaus.edu, wwo.ayman-badawi.com

